If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-0.64=0
a = 1; b = 0; c = -0.64;
Δ = b2-4ac
Δ = 02-4·1·(-0.64)
Δ = 2.56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{2.56}}{2*1}=\frac{0-\sqrt{2.56}}{2} =-\frac{\sqrt{}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{2.56}}{2*1}=\frac{0+\sqrt{2.56}}{2} =\frac{\sqrt{}}{2} $
| 138=n+n | | 9–7q=5-3q | | 7p+13=2p+4 | | 3x/2+5-x/x=4 | | X+(600-0.2x)=1000 | | 0.225x-1800=0 | | 4*(x/3)=342 | | 4x/3=344 | | 10-10x10=-90 | | 1+7x=-7x | | 10=f–26 | | f(-2)=-2^3+9 | | n−28=28 | | q+19=62 | | 47=2h+7 | | 34=3n+7 | | (x-4)/2=(8-4) | | 6y/4=y+4 | | 3/4(2y)=(y+4) | | 4/3h=72 | | (X-4)/2=(y-4) | | (4/3y+4/3-4)/2=(y-4) | | 9x^2+27x-172=0 | | (2x)°+(3x-40)=x | | b+(8-b)/2=5 | | b+(6-b)/2=5 | | (-8f)+(-f=8) | | 5(t-7)=22 | | 8(v-8)=6v-46 | | 9^3n-^6=8^2n-^4 | | 5(t-1)+7=22 | | 50=n/2 |